Example: Optimal control of a PWA System by State-feedback Abstractions solved by Ellipsoid abstraction.

Binder nbviewer

This document reproduces [1, Example 2], which is a possible application of state-feedback transition system for the optimal control of piecewise-affine systems. Consider a system $\mathcal{S}:=(\mathcal{X}, \mathcal{U},\rightarrow_F)$ with the transition function

\[\begin{equation} \{A_{\psi(x)}x+B_{\psi(x)}u+g_{\psi(x)}\}\oplus\Omega_{\psi(x)} \end{equation}\]

where $\psi:\mathcal{X}\rightarrow\{1,\dots,N_p\}$ selects one of the $N_p$ subsystems defined by the matrices

\[\begin{equation} A_1=\begin{bmatrix} 1.01 & 0.3\\ -0.1 & 1.01 \end{bmatrix}, ~B_1=\begin{bmatrix} 1&0\\ 0 & 1 \end{bmatrix},~g_1=\begin{bmatrix} -0.1\\-0.1 \end{bmatrix}, \end{equation}\]

\[A_2=A_1^\top,~ A_3=A_1,~B_2=B_3=B_1,~g_2=0\]

and $g_3=-g_1$. These systems are three spiral sources with unstable equilibria at $x_{e1}=[-0.9635~~0.3654]^\top,~x_{e2}=0,$ and $x_{e3}=-x_{e1}$. We also define the additive-noise sets $\Omega_1=\Omega_2=\Omega_3=[-0.05,0.05]^2$, the control-input set $\mathcal{U}=[-0.5,0.5]^2$ and the state space $\mathcal{X}=[-2,2]^2$. The $N_p=3$ partitions of $\mathcal{X}$ are $\mathcal{X}_1= \{x\in\mathcal{X}~:~x_1\leq-1 \},~\mathcal{X}_3= \{x\in\mathcal{X}~:~x_1>1 \},$ and $\mathcal{X}_2=\mathcal{X}\setminus(\mathcal{X}_1\cup\mathcal{X}_3)$. The goal is to bring the state $x$ from the initial set $\mathcal{X}_0$ to a final set $\mathcal{X}_*$, while avoiding the obstacle $\mathcal{O}$, which are to be defined.

First, let us import StaticArrays, LinearAlgebra, CDDLib, Clarabel, Ipopt, and JuMP. We also instantiate our optimizers and CDDLib.

using StaticArrays, LinearAlgebra, Polyhedra, Random
using MathematicalSystems, HybridSystems
using JuMP, Clarabel
using SemialgebraicSets, CDDLib
using Plots, Colors
using Test
Random.seed!(0)

using Dionysos
const DI = Dionysos
const UT = DI.Utils
const DO = DI.Domain
const ST = DI.System
const SY = DI.Symbolic
const PR = DI.Problem
const OP = DI.Optim
const AB = OP.Abstraction

lib = CDDLib.Library() # polyhedron lib

include(joinpath(dirname(dirname(pathof(Dionysos))), "problems", "pwa_sys.jl"))
Main.var"Main".PWAsys

Problem parameters

Notice that in [1] it was used Wsz = 5 and Usz = 50. These, and other values were changed here to speed up the build time of the documentation.

Usz = 70 # upper limit on |u|, `Usz = 50` in [1]
Wsz = 3 # `Wsz = 5` in [1]
dt = 0.01; # discretization step

concrete_problem =
    PWAsys.problem(; lib = lib, dt = dt, Usz = Usz, Wsz = Wsz, simple = false)
concrete_system = concrete_problem.system
Hybrid System with automaton HybridSystems.GraphAutomaton{Graphs.SimpleGraphs.SimpleDiGraph{Int64}, Graphs.SimpleGraphs.SimpleEdge{Int64}}(Graphs.SimpleGraphs.SimpleDiGraph{Int64}(7, [[1, 2], [1, 2, 3], [2, 3]], [[1, 2], [1, 2, 3], [2, 3]]), Dict{Graphs.SimpleGraphs.SimpleEdge{Int64}, Dict{Int64, Int64}}(Edge 3 => 2 => Dict(4 => 2), Edge 1 => 2 => Dict(1 => 2), Edge 1 => 1 => Dict(3 => 1), Edge 3 => 3 => Dict(7 => 3), Edge 2 => 2 => Dict(5 => 2), Edge 2 => 1 => Dict(2 => 1), Edge 2 => 3 => Dict(6 => 3)), 7, 7)

Abstraction parameters

This is state-space is defined by the HyperRectangle rectX. We also define a control space with the same bounds. This is done because, for a state-feedback abstraction, selecting a controller out of the set of controllers is the same as selecting a destination state out of the set of cells $\mathcal{X}_d$, given it's determinism. To build this deterministic state-feedback abstraction in alternating simulation relation with the system as described in [1, Lemma 1], a set of balls of radius 0.2 covering the state space is adopted as cells $\xi\in\mathcal{X}_d$. We assume that inside cells intersecting the boundary of partitions of $\mathcal{X}$ the selected piecewise-affine mode is the same all over its interior and given by the mode defined at its center. An alternative to this are discussed in [1]. Let us define the corresponding grid:

n_step = 3
X_origin = SVector(0.0, 0.0);
X_step = SVector(1.0 / n_step, 1.0 / n_step)
nx = size(concrete_system.resetmaps[1].A, 1)
P = (1 / nx) * diagm((X_step ./ 2) .^ (-2))
state_grid = DO.GridEllipsoidalRectangular(X_origin, X_step, P, concrete_system.ext[:X]);
opt_sdp = optimizer_with_attributes(Clarabel.Optimizer, MOI.Silent() => true)

optimizer = MOI.instantiate(AB.EllipsoidsAbstraction.Optimizer)
MOI.set(optimizer, MOI.RawOptimizerAttribute("concrete_problem"), concrete_problem)
MOI.set(optimizer, MOI.RawOptimizerAttribute("state_grid"), state_grid)
MOI.set(optimizer, MOI.RawOptimizerAttribute("sdp_solver"), opt_sdp)
MathOptInterface.OptimizerWithAttributes(Clarabel.MOIwrapper.Optimizer, Pair{MathOptInterface.AbstractOptimizerAttribute, Any}[MathOptInterface.Silent() => true])

Build the state-feedback abstraction and solve the optimal control problem by through Dijkstra's algorithm [2, p.86].

MOI.optimize!(optimizer)
compute_symmodel_from_hybridcontrolsystem! started

Computing symbolic control system:   4%|▋               |  ETA: 0:00:27
Computing symbolic control system:   8%|█▎              |  ETA: 0:00:26
Computing symbolic control system:  12%|██              |  ETA: 0:00:28
Computing symbolic control system:  16%|██▋             |  ETA: 0:00:26
Computing symbolic control system:  20%|███▎            |  ETA: 0:00:24
Computing symbolic control system:  24%|███▉            |  ETA: 0:00:23
Computing symbolic control system:  29%|████▋           |  ETA: 0:00:21
Computing symbolic control system:  33%|█████▍          |  ETA: 0:00:19
Computing symbolic control system:  37%|██████          |  ETA: 0:00:18
Computing symbolic control system:  42%|██████▊         |  ETA: 0:00:16
Computing symbolic control system:  46%|███████▍        |  ETA: 0:00:15
Computing symbolic control system:  51%|████████▏       |  ETA: 0:00:14
Computing symbolic control system:  55%|████████▊       |  ETA: 0:00:13
Computing symbolic control system:  60%|█████████▌      |  ETA: 0:00:11
Computing symbolic control system:  65%|██████████▍     |  ETA: 0:00:10
Computing symbolic control system:  69%|███████████     |  ETA: 0:00:09
Computing symbolic control system:  74%|███████████▊    |  ETA: 0:00:07
Computing symbolic control system:  78%|████████████▌   |  ETA: 0:00:06
Computing symbolic control system:  82%|█████████████▏  |  ETA: 0:00:05
Computing symbolic control system:  86%|█████████████▊  |  ETA: 0:00:04
Computing symbolic control system:  90%|██████████████▍ |  ETA: 0:00:03
Computing symbolic control system:  94%|███████████████ |  ETA: 0:00:02
Computing symbolic control system:  98%|███████████████▋|  ETA: 0:00:01
Computing symbolic control system: 100%|████████████████| Time: 0:00:27
compute_symmodel_from_controlsystem! terminated with success: 1001 transitions created
Abstraction created in 27.938426686 seconds with 1001 transitions
Abstract controller computed with: succes

Get the results

abstract_system = MOI.get(optimizer, MOI.RawOptimizerAttribute("abstract_system"))
abstract_problem = MOI.get(optimizer, MOI.RawOptimizerAttribute("abstract_problem"))
abstract_controller = MOI.get(optimizer, MOI.RawOptimizerAttribute("abstract_controller"))
concrete_controller = MOI.get(optimizer, MOI.RawOptimizerAttribute("concrete_controller"))
abstract_lyap_fun = MOI.get(optimizer, MOI.RawOptimizerAttribute("abstract_lyap_fun"))
concrete_lyap_fun = MOI.get(optimizer, MOI.RawOptimizerAttribute("concrete_lyap_fun"))
transitionCont = MOI.get(optimizer, MOI.RawOptimizerAttribute("transitionCont"))
transitionCost = MOI.get(optimizer, MOI.RawOptimizerAttribute("transitionCost"));

Define the mapping function

#Return pwa mode for a given x
get_mode(x) = findfirst(m -> (x ∈ m.X), concrete_system.resetmaps)
get_mode (generic function with 1 method)

To simplify : "We assume that inside cells intersecting the boundary of partitions of X the selected piecewise-affine mode is the same all over its interior and given by the mode defined at its center."

function f_eval1(x, u)
    currState = SY.get_all_states_by_xpos(
        abstract_system,
        DO.crop_to_domain(abstract_system.Xdom, DO.get_all_pos_by_coord(state_grid, x)),
    )
    next_action = nothing
    for action in abstract_controller.data
        if (action[1] ∩ currState) ≠ []
            next_action = action
        end
    end
    c = DO.get_coord_by_pos(
        state_grid,
        SY.get_xpos_by_state(abstract_system, next_action[1]),
    )
    m = get_mode(c)
    W = concrete_system.ext[:W]
    w = (2 * (rand(2) .^ (1 / 4)) .- 1) .* W[:, 1]
    return concrete_system.resetmaps[m].A * x +
           concrete_system.resetmaps[m].B * u +
           concrete_system.resetmaps[m].c +
           w
end

cost_eval(x, u) = UT.function_value(concrete_problem.transition_cost[1][1], x, u)
cost_eval (generic function with 1 method)

Simulation

We define the stopping criteria for a simulation

nstep = typeof(concrete_problem.time) == PR.Infinity ? 100 : concrete_problem.time; #max num of steps
function reached(x)
    currState = SY.get_all_states_by_xpos(
        abstract_system,
        DO.crop_to_domain(abstract_system.Xdom, DO.get_all_pos_by_coord(state_grid, x)),
    )
    if !isempty(currState ∩ abstract_problem.target_set)
        return true
    else
        return false
    end
end
reached (generic function with 1 method)

We simulate the closed loop trajectory

x0 = concrete_problem.initial_set
cost_control_trajectory = ST.get_closed_loop_trajectory(
    f_eval1,
    concrete_controller,
    cost_eval,
    x0,
    nstep;
    stopping = reached,
)
cost_bound = concrete_lyap_fun(x0)
cost_true = sum(cost_control_trajectory.costs.seq);
println("Goal set reached")
println("Guaranteed cost:\t $(cost_bound)")
println("True cost:\t\t $(cost_true)")
Goal set reached
Guaranteed cost:	 2.4407918201065453
True cost:		 1.7565808377369416

Visualize the results.

rectX = concrete_system.ext[:X];

Display the specifications and domains

fig = plot(;
    aspect_ratio = :equal,
    xtickfontsize = 10,
    ytickfontsize = 10,
    guidefontsize = 16,
    titlefontsize = 14,
);
xlims!(rectX.A.lb[1] - 0.2, rectX.A.ub[1] + 0.2);
ylims!(rectX.A.lb[2] - 0.2, rectX.A.ub[2] + 0.2);
xlabel!("\$x_1\$");
ylabel!("\$x_2\$");
title!("Specifictions and domains");
#We display the concrete domain
plot!(rectX; color = :yellow, opacity = 0.5);
#We display the abstract domain
plot!(abstract_system.Xdom; color = :blue, opacity = 0.5);
#We display the abstract specifications
plot!(
    SY.get_domain_from_symbols(abstract_system, abstract_problem.initial_set);
    color = :green,
    opacity = 0.5,
);
plot!(
    SY.get_domain_from_symbols(abstract_system, abstract_problem.target_set);
    color = :red,
    opacity = 0.5,
);
#We display the concrete specifications
plot!(UT.DrawPoint(concrete_problem.initial_set); color = :green, opacity = 1.0);
plot!(UT.DrawPoint(concrete_problem.target_set); color = :red, opacity = 1.0)
Example block output

Display the abstraction

fig = plot(;
    aspect_ratio = :equal,
    xtickfontsize = 10,
    ytickfontsize = 10,
    guidefontsize = 16,
    titlefontsize = 14,
);
xlims!(rectX.A.lb[1] - 0.2, rectX.A.ub[1] + 0.2);
ylims!(rectX.A.lb[2] - 0.2, rectX.A.ub[2] + 0.2);
title!("Abstractions");
plot!(abstract_system; arrowsB = true, cost = false)
Example block output

Display the Lyapunov function and the trajectory

fig = plot(;
    aspect_ratio = :equal,
    xtickfontsize = 10,
    ytickfontsize = 10,
    guidefontsize = 16,
    titlefontsize = 14,
);
xlims!(rectX.A.lb[1] - 0.2, rectX.A.ub[1] + 0.2);
ylims!(rectX.A.lb[2] - 0.2, rectX.A.ub[2] + 0.2);
xlabel!("\$x_1\$");
ylabel!("\$x_2\$");
title!("Trajectory and Lyapunov-like Fun.");
plot!(abstract_system; arrowsB = false, cost = true, lyap_fun = optimizer.lyap);
plot!(cost_control_trajectory; color = :black)
Example block output

References

  1. L. N. Egidio, T. Alves Lima, R. M. Jungers, "State-feedback Abstractions for Optimal Control of Piecewise-affine Systems", IEEE 61st Conference on Decision and Control (CDC), 2022, accepted.
  2. D. Bertsekas, "Dynamic programming and optimal control". Volume I, Athena scientific, 2012.

This page was generated using Literate.jl.